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The effect of weak gravitational force on Brownian 
coagulation of small particles 

By Y. G. WANGT AND C.  S .  W E N  

Department of Physics, Nankai University, Tianjin, China 

The coagulation rate of a dilute polydisperse suspension of particles is considered for 
small PBclet number, which provides a measure of the ratio of the relative gravity- 
induced motion to Brownian motion between two rigid spheres. I n  particular, a four- 
term expansion for the dimensionless coagulation rate (Nusselt number) as function 
of the PQclet number is developed by making use of a singular perturbation method. 
In  the limit of the radius of one of the two spheres becoming small, the result agrees 
with Acrivos & Taylor’s (1962) work on mass transfer to spheres a t  small PQclet 
number. 

1; Introduction 
I n  this paper we consider the coagulation rate of a dilute, polydisperse, statistically 

homogeneous suspension of small rigid spherical particles. The particles are settling 
under gravity through Newtonian fluid with speeds which vary with their size and 
their density. They are also in random motion due to  Brownian thermodynamics. 
The particles exert attractive van der Waals forces on each other, and two particles 
which come into contact through the action of this force form a permanent doublet. 
The rate a t  which the suspension becomes coagulated is in large part determined by 
the rate of doublet formation, and it is this quantity that we seek to determine. The 
effect of weak gravitational force on Brownian coagulation is found by means of a 
four-term expansion for the dimensionless coagulation rate (Nusselt number). 

The method of calculation involves use of the pair-distribution function pi , (r) ,  and 
a singular perturbation technique. Near the test sphere i (the inner region) Brownian 
motion balances the interparticle force - van der Waals force - and the relative 
gravity-induced motion between the test sphere i and a sphere j is negligible when 
the PBclet number is small. However, far from the test sphere i (the outer region) the 
relative gravitational motion is no longer small and must be taken into account. 
Then in the outer region Brownian motion balances the relative gravity-induced 
motion, and the influence of interparticle force is negligible owing to its rapid decay. 
Thus, an expansion in terms of PBclet number, 9& for pt3(r) is not valid for large 
distances of sphere j from sphere i (inner expansion). It has therefore to be matched 
with a separate expansion which is calculated in the outer region (outer expansion). 
The method of matched asymptotic expansions is then used. Using this method, van 
de Ven & Mason (1977) calculated the case of weak shear-inducedlstrong Brownian 
motion coagulation rate as far as the second term of order Pij, and Melik & Foglor 
( 1984 a )  calculated the case of weak gravity-induced/strong Brownian motion 
coagulation rate as far as the second term of order Pi,. The purpose of this paper is 
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simply to continue the analysis of Melik & Fogler (1984a) as far as the fourth term 
of order 9 4 ,  thus improving representation of the coagulation rate. 

The basic procedure of the method of matched asymptotic expansions used in this 
paper is very similar to the one used in Acrivos & Taylor's (1962) work on mass/heat 
transfer to or from a sphere at small PBclet number. For a detailed description of the 
method, the reader is referred to Acrivos & Taylor (1962). It is of interest to note that 
the two problems have some connection. The result of this paper agrees with Acrivos 
& Taylor's (1962) result, when the radius of sphere j approaches zero. 

2. Basic equation for the pair-distribution function 
The first step for calculating the coagulation rate in a dilute polydisperse 

suspension is to determine the pair-distribution function pi,(r), defined as the 
probability that the centre of sphere j (with radius u,, density p, and number density 
n,) lies within unit volume a t  position r relative to the centre of the test sphere i (with 
radius ai, density p i  and number density na). Having determined the pair-distribution 
function, the coagulation rate can be calculated, since the flux of sphere j across the 
contact surface T = a,+a, (T  = Irl) enclosing each sphere i can then be calculated. 

Because the spheres are small, the inertia forces of both the spheres and the fluid 
may be neglected. The relative velocity of the two spheres can be decomposed into 
linearly independent contributions from gravity, interparticle force, and Brownian 
thermodynamic force. The equation for pa#) and the corresponding boundary 
conditions are then as follows (Wen & Batchelor 1985) : 

and p,, = 0 at r = a,+a,, pa ,+ l  as r+m,  (2.2) 

where &, is the relative gravitational velocity of the two spheres, is the 
interparticle potential, k the Boltzmann constant, T the absolute temperature, 0 ,  is 
the relative Brownian diffusive tensor of the two spheres. 

Provided the suspension is dilute, the rate of conversion of singlets into doublets 
is not too rapid, and the interparticle potential satisfies the requirements pointed out 
by van de Ven & Mason (1977), and Melik & Fogler (1984a), a steady state can be 
approximately reached in the initial stage of the coagulation process. The divergence 
term of the relative velocity of the two spheres in (2.1) is thus equal to zero. Choosing 
the relative gravitational velocity V$') of the two spheres when they are far apart as 
the representative magnitude of K,, and the relative Brownian diffusivity D$') of the 
two spheres when they are far apart as the representative magnitude of D,, (2.1) and 
( 2 . 2 )  reduce to the following dimensionless forms : 

and pi,  = 0 a t  s =  2, p i , + l  as s - t m ,  (2 .4)  

where s is the dimensionless distance between the centres of the two spheres scaled 
on the average radius, namely s = 2r/(a, +a,), and s = IsI. The PBclet number gi, now 
is defined as (a i+aj )  V$')/2D$'), and is assumed to be small. 
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In the case of sedimenting spheres of non-uniform size, the relative velocity of two 
spheres which are far apart from other spheres has the form (Batchelor 1982): 

and the relative Brownian diffusivity tensor has the form (Batchelor 1982), 

The scalar functions L,  M ,  G, H can be obtained from the low-Reynolds-number 
hydrodynamics (Jeffrey & Onishi 1984), and have been calculated by Batchelor & 
Wen (1982) for rigid spheres. Because of the decomposition of the solution into an 
inner and an outer expansion, the necessity of which has been mentioned in the above 
section, only the far-field asymptotic forms for them are needed. 

We substitute the far-field asymptotic expression for the mobility functions 
(Jeffrey & Onishi 1984) in the scalar functions L ,  M ,  G, H given by Batchelor (1982). 
The following far-field asymptotic forms are obtained : 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

L 
L ( ~ )  = 1 + 2 + 0 ( 8 - 3 ) ,  

S 

~ ( $ 1  = i +-+o(S-3),  Jfl 

S 

G 

H 

~ ( s )  = 1 + ~ + 0 ( 8 - 3 ) ,  

~ ( s ) =  1 +‘+o(s-3), 

S 

S 

where and MI = &, 3( 1 - A3y) L -  
- (A*y-l)( l+h)  

- 6A 
Gl = ~ and H ,  = ;GI. 

(1 +A)2 

(2.11) 

(2.12) 

The two parameters A and y in the above expressions are the size ratio and the 
reduced density ratio of the two spheres: 

(2.13) 

where po is the density of the fluid. The divergence term of &,/V$‘) is given by 
(Batchelor 1982) 

(2.14) 

The far-field asymptotic form for the scalar function W(8) is as follows (Batchelor 
1982) : 

120~3(y-1) i 
W(s)  = ,+o(s-7). 

( A 2 y - l ) ( l + A )  s 
(2.15) 



602 Y.  G. Wang and C. S. Wen 

We now turn to the problem of the interparticle potential Oij. Only the case of 
rapid flocculation is considered in this paper. The interparticle potential is thus 
dominated by the attractive van der Waals potential. The expression for @ti is given 
by (Hamaker 1937) 

(2 -4 )  ( 1  + In 
8h 8h 

@.. = -- 
a? ' A  { (s2 -4) (1  + A)2+s2(  1 + - 4(1 - A ) 2  s2( 1 + -4( 1 

(2.16) 

where A is the composite Hamaker constant. From (2.16), it is easy to show that the 
far-field asymptotic form for the attractive van der Waals potential is 

1024 Ah3 1 qj = -- ~ - ,+O(s-S). 
9 ( 1 + A )  s 

(2.17) 

Of course, (2.16) and (2.17) describe the unretarded van der Waals potential. In 
1977, van de Ven & Mason said, '. . .the interaction energy at large particle separation 
is determined by van der Waals attraction. At such separations the forces are 
retarded and V,,, (i.e. Qtj in the present work) is proportional to s - ~ .  . .'. To include 
the retardation effects in the outer region is certainly necessary. However, the fairly 
slow sP2 decay of the van der Waals potential proposed by van de Ven & Mason 
(1977), and then by Melik & Fogler (1984~)  in their outer region analysis cannot be 
correct, since the retardation effects are to weaken not to strengthen the van der 
Waals force. The decay of the retarded van der Waals potential must be more rapid 
than sP6. For the case of an equal-size system, Feke & Schowalter (1983) cited a far- 
field asymptotic expression for the retarded van der Waals potential as follows: 

(2.18) 

In this expression p = 2x(s - 2)/h,, where A, is the dimensionless London wavelength 
scaled on the radius of the spheres. Just as we expect, (2.18) does show a more rapid 
s-' decay as s + CQ . 

Although decay as s - ~  is not correct, in $4 we shall see that it does not affect Melik 
& Fogler's (1984~)  two-term expansion result. However, it will certainly affect the 
third- and the fourth-term expansion results, which are calculated in this paper. 

In the case of rapid flocculation, the repulsive potential V, is approximated by a 
thin double layer potential. For an unequal-size system Melik & Fogler (1984~)  gave 
the following form : 

(2.19) V, = ~ ~ o a , ~ ~ - - - l n [ 1 ~ e x p ( - r ( ~ - 2 ) ) ] ,  

where q, is the dielectric strength, ~o the surface potential, and the parameter r is the 
dimensionless reciprocal of the deb ye-Hiickel double layer thickness scaled on the 
reciprocal of the average radius +(u,+ui). Since (2.19) is valid only for thin double 
layers, r + 1. 

From (2.19) we may see that the far-field asymptotic form for the thin double layer 
repulsive potential is 

h 
1 + A  

V, = O(e-'s) as s+m.  (2.20) 

Obviously the decay of this type of repulsive potential is much more rapid than the 
negative-power decay of the attractive van der Waals potential. 
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3. Inner expansion and outer expansion for p,, 
In this section we shall calculate a four-term inner expansion and a three-term 

outer expansion for pi,. The technical aspects of this section are presented in a concise 
manner since the analysis closely follows the analysis of mass/heat transfer from a 
sphere at  low P6clet number (Acrivos & Taylor 1962). We choose a spherical polar 
coordinate system such that its origin is at the centre of the test sphere i, and the 
direction of the polar axis coincides with V$). Thus the problem is axisymmetric 
about the polar axis, and 8 is the polar angle. 

According to the method of matched asymptotic expansions, we construct an 
'inner' and an 'outer' expansion. The inner expansion is assumed to be of the form 

W 

pij = pi;)(s, 8 )  tn(s)  with t l ( s )  = 1, 
n-1 

where the perturbation parameter E = Pi*, and t , (s)  (n = 1 , 2 , .  . .) and also in(€) (n = 
1 , 2 , .  . ,) in the outer expansion (3.3) are gauge functions (Van Dyke 1975), which are 
not necessarily simple powers of E ,  and for the moment are restricted only by the 
requirements 

tn+l(e) 
6'0 t n ( 4  E*O tn (4  

0 and lim-=O. lim n+l t (4 = 

The inner equation is the same as (2.3). The set of equations for pi;) (n = 1,2,  . . .) can 
be obtained by substitution of the expansion (3.1) in (2.3). The boundary conditions 
imposed on pj;) are 

pi;) = 0 (n 2 1) at s = 2. (3.2) 

These boundary conditions are insufficient to uniquely determine pi;). However, 
additional conditions at s +- 00 are furnished by matching the inner and outer 
expansions in their common domains of validity. 

The outer expansion for pi, is assumed to be of the form 
W 

= 2 $)(p,  8) in(€) with i1(e) = 1.  
n-1 

(3.3) 

The contracted radial coordinate p ,  where p = es, is introduced in the outer region so 
that the perturbation parameter 8 can be scaled out in the outer equation ; then we 
have 

(3.4) 

The set of equations for $i;) (n = 1,2, . . .) can also be obtained by substitution of the 
expansion (3.3) in (3.4). The boundary conditions are 

$i;)+-i, $j;) = O  (n  2 2) as p+m.  (3.5) 

These boundary conditions are also insufficient, However, additional conditions at 
p + O  are imposed by the requirements that the outer and inner expansion be 
matched. 

To see the similarity of the problem to the mass/heat transfer problem, we now 
find the equation for the first outer expansion term 1;:;). 

Substituting (3.3) in (3.4) and taking the leading term yields the equation for the 
20 FLM 214 
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first outer expansion term. Putting the far-field asymptotic forms for &, D$j, and 
(2.7), (2.8), (2.9), (2.10) and (2.17) in the resulting equation, and again taking the 
leading term yields 

The van der Waals attractive potential term disappears in the outer expansion term 
equation owing to its rapid sd6 decay. The outer region equation (3.6) with constant 
diffusivity and a uniform stream field is very similar to the convective-diffusion 
equation in the mass/heat transfer problem. Hence it is not surprising that the 
problem of coagulation at small PBclet number can be tackled by the method used 
in the mass/heat transfer problem at small PBclet number. The method of Acrivos 
& Taylor (1962) is thus used in this paper. 

Following the procedure of Acrivos & Taylor (1962), it  can be shown that for the 
inner expansion the solutions are 

t2(e)  = e, t3(e) = e2 In 8, t4(e) = e2, (3.7) 

and 

Pi5 (3) - - L 3( 5H 1 - 4Ml) cvpy, (3.10) 

pl;) = R(4) 0 +R$~)P,(cos 0) +R~)P,(cos I J ) ,  (3.11) 

where P,(cos 0)  (1 = 0 , 1 , 2 )  are the Legendre polynomials of order 1. The solution @) 

given by (3.8) was first derived by Derjaguin & Muller (1967), and is a pure diffusion 
result. The integral constant C, is given by 

(3.12) 

The scalar function &(s) in the particular solution for the second inner expansion 
terms pi;) (see (3.9)) satisfies the following ordinary differential equation : 

"{s2G[Q$($)+$]}-2H& ds = -$-+~~p$) 2c [ W - L -  :s(f$)]. - (3.13) 

with the boundary conditions 

& = O  at s = 2 ,  Q-.-C, as s+co. (3.14) 

The complementary solution Ri4) for the fourth inner expansion term pi;) (see (3.11)) 
is given by 

(3.15) 
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where the coefficient AIp) is of the form 

2Ml - 3Hl 5H1 - 4Ml 4M, - 3H, 
In 2 + C,- 8 

3 Ah4) = C,( 2 + 3  CE - 

605 

Here C, = 0.577210 is the Euler constant. The precise forms of the scalar functions 
By) and B:*) in the particular solutions of the fourth inner expansion term pi!) are not 
required in the present work, since only the coagulation rate is considered in this 
paper (see next section), 

In outer region, the solutions of outer expansion are found to be 

&(€) = E ,  i 3 ( E )  = E2, (3.17) 

and #) 5 1 ,  (3,18) 

"(2) = "' e-b(l-C0S8) (3.19) Pi1 

where the integral constants Bj3) (I = 0,1,2) are as follows : 

2 c  
= -$(Ml-Hl)(CE-l), 

sp) = 3K '(h!l-3lld1)(3-cE), 

and the partiaular solutions uf3) ( 1  = 0, 1,Z) are 

(3.21) 

(3.22) 

(3.23) 

up) = -&7,(Hl-2Ml)P2(cosO)[~( 1 --.$ebIPm 6 12 5 d x  P P  

(3.25) 

(3.26) 

20-2 
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4. The calculation of the coagulation rate 
The coagulation rate I$ is actually the net flux of sphere j across the contact 

surface enclosing the test sphere i, viz. 

We define the dimensionless coagulation rate Nusselt number Nij as the 
dimensionless net flux of sphere j scaled on the zero-Pdclet-number net flux, then 

Expanding pi, in terms of Legendre polynomials P,(cos e), it is evident that by virtue 
of the orthogonality of P,(cos 8), only those Po(cos 8) terms in pi, - say p!j - contribute 
to the flux integral in (4.2). Thus we have 

Substituting the inner expansion (3.1) with (3.7), (3.8), (3.9), (3.10), (3.11) in (4.3) 
yields the four-term expansion for J V ~ ~  namely 

2 ~ 4 7  - 3 ~ 3 ~  + 3~ - 2 
(A2y - 1 )  (1 + A ) 2  

Nij = 1 +CP9$,+ CvP$ In Pij +Ak4)9$ +o(Pt , ) ,  (4.4) 

where the coefficient of the fourth term A t )  is given by (3.16). The first two terms of 
the expansion (4.4) agree with the result of Melik & Fogler (1984~) .  Their incorrect 
sP2 decay of the van der Waals potential does not affect their two-term expansion, 
since sP2 decay makes the interparticle potential term in the first two outer expansion 
term equations disappear. The second inner expansion term p$) given by (3.9) is thus 
the same as Melik & Fogler's solution (63) in their 1984a paper. However, the s - ~  
decay will certainly affect the third and the fourth term, since in that case there will 
be an interparticle potential term appearing as a non-homogeneous term in the 
corresponding outer expansion equations, whereas the more rapid s - ~  decay will still 
make them disappear. 

In order to gain a better understanding of the coupled Brownian and and gravity- 
induced coagulation process, the dimensionless coagulation rate Xi, as function of 
the PQclet number has been calculated for a typical hydrosol dispersion in which 
y = 1,  h = 0.5 ,A = 5 x loWz1 J and kT = 4 x J (thenA/kT = 1.25) (Davis 1984). 
Figure 1 gives the computed results for 0 < Pi, <. 1. (From (3.12), (3.16), it can be 
shown that C, = 0.570, and A t )  = -0.0976. The size ratio 0.5 has been chosen since 
this case might show a more clear effect of the gravity-induced motion.) 

Curve 1 in figure 1 corresponds to the result of Melik & Fogler. The term C,Pt! is 
the leading term of the effects of gravity-induced motion on the Brownian 
coagulation rate. It is always positive. In the outer region, the leading term of the 
gravitational relative velocity of the two spheres is qf, which is a uniform stream 
field. The uniform stream field transfers spherej from infinity to s - 0(8i1) without 
changing the concentration of sphere j. It thus increases the overall concentration 
difference of sphere j in the inner region. The increase of the overall concentration 
difference enhances the Brownian diffusive flux of sphere j, then enhances the 
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9, 

FIGURE 1. The dimensionless coagulation rate at small PBclet number: (1) Nt, = 1 +CT%,; (2) 
the first three terms of expansion (4.4); (3) the four-term expansion (4.4). 

Brownian coagulation rate. Curves 2 and 3 show the effects of successive addition of 
further terms in the Nusselt number expansion. Actually they show the effects of the 
hydrodynamic interactions between the two spheres on the uniform stream field 6;) 
and the constant diffusivity D$) in the outer region, and then on the Brownian 
coagulation rate. The effects can either be positive or negative. For the case shown 
in figure 1, the effects of the third and the fourth term are both negative. However, 
the modifications made by these terms must be small as indicated by curve 2 and 
curve 3, since they are terms of an asymptotic expansion. Therefore, the gravity- 
induced motion always increases the Brownian coagulation rate. 

5. The connection between the problems of coagulation and mass transfer 
Acrivos BE Taylor (1962) obtained the asymptotic expansion of the dimensionless 

mass transfer rate N for a sphere with radius a immersed in a uniform external flow 
in terms of the PBclet number P for P < 1, which truncated to order O(P2)  is given 
by 

= 1 +P+2P21n P+ [%+2(C, +ln2)] P2 +o(P2). (5.1) 
F 

N =  
4 n d (  c, - C,) 

Here F is the dimensional mass transfer rate, 47caK(C,-Cc,) is the zero-Pdclet- 
number mass transfer rate, K the molecular diffusivity, C, and C, the concentration 
a t  the surface of the sphere and that at infinity. P is defined as aU,/2k, where Urn 
is the velocity of the external uniform flow. 
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On the other hand, as h + 0, and a, -+ 0, we have 

3 4  
L(s) -+ 1 --+--, 

s s3 

3 4  
H(s)  -+ I -- - - 

2s s3' 
W(s)  --f 0, 

(5.2a) 

(5 .2b )  

G(s) -+ 1, H(s )  + 1, ( 5 . 2 ~ )  

(5.2d) 

(5.2e) 

Substituting (5.2a-e) in (3.13), the solution for Q(s) satisfying the boundary 
condition (3.14) can be found to be 

3 3 2  
Q(S)  = - l+---+- .  

s s2 s3 (5.3) 

Then substitution of (5.2a-c) and (5.3) in (3.16) yields 

With the results (5.2d) and (5.4). The four-term expansion for the dimensionless 
coagulation rate (4.4) reduces to 

N -  4, = 1 +9",+28,2,1n8tj+['+2(C,+ln2)]9~+o(9,2,). (5.5) 
" - 4na, Di;)nj 

The PBclet number Ptj now reduces to a, Vjo)/2D$'), where Via) is the Stokes terminal 
velocity of the test sphere i under gravity. Comparing (5.1) with (5.5), it appears that 
(5.5) agrees with (5.1), if we make the assumptions that as A + 0 ,  a,+O, then a,+a, 
B{;)-+K, n,+(C,-C,) ,  ViO)+ U,. 

The fact that the coagulation rate in the limit of the radius of sphere j becoming 
small agrees with the mass transfer rate is remarkable, but is not a surprise. In fact, 
it is easy to understand from the viewpoint of a physical model for coagulation. 
When h + 0, a, + 0, the effect of sphere j on the flow field due to the settling of sphere 
i disappears, and sphere j moves in the same way as a fluid point. Thus the flow field 
tends to that produced by a sphere immersed in a given uniform flow. As h + 0, 0, 
tends to D$)/, Qij+0(A =I= 0 is required). Thus the coagulation model formally 
reduces to the mass transfer model. 

6. Discussion 
In  $3, we have used the far-field asymptotic form for the van der Waals potential, 

(2. l?), without considering the retardation effects and the repulsive potential. 
However, it is not difficult to see that the form of the four-term expansion for Nusselt 
number (4.4) would be unchanged even when we include the effects of retardation 
and the repulsive potential. 

According to DLVO theory (Derjaguin & Landay 1941 ; Verwey & Overbeek 1948), 
the total interparticle potential djij can be obtained by summing the attractive and 
repulsive potential. Form (2.20) we have seen that, for the case of rapid flocculation, 
the decay of the thin double layer potential is much more rapid than s - ~  as s --f GO. 
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Hence the repulsive potential term cannot appear in the outer expansion term 
equations, and the form of the resulting expansion for A/$, should be the same as 
before. Of course, the values of C, and Ai4) should be changed when the repulsive 
potential is considered. 

The far-field asymptotic form of the retarded van der Waals potential for an 
unequal-size system seems to  be not available. The expression (2.18) is valid only for 
an equal-size system. Perhaps the right-hand side of (2.18) should be multiplied by 
a numerical coefficient which depends on A, and the dimensionless London 
wavelength A, should be scaled on the average radius $(a, +a,) when the unequal-size 
system is considered. In  the case of the near-field asymptotic expansion, the 
numerical coefficient is 4A/( 1 +A)' (Davis 1984), and the dimensionless London 
wavelength is just scaled on $(ai+a,) (Melik & Fogler 1984b). If the above 
supposition is right, then the decay of the retarded attractive potential would still be 
s+ as s+ 00, and would still make i t  disappear in the outer expansion term equation. 
The same is true even if the above supposition is not right. Anyway, the decay of the 
retarded van der Waals potential should be more rapid than s - ~ ,  since the effect of 
retardation is to  weaken the van der Waals attractive potential. Thus the form of the 
four-term expansion for Nij (4.4) would be unchanged even if we include retardation 
effects. The only things changed are the values of C, and A?). They should be smaller 
than those obtained from (2.16) and (2.17), since both retardation and repulsive 
potential contribute negative effects on the van der Waals attractive potential. 
Incidentally, the incorrect s - ~  decay used by Melik & Fogler ( 1 9 8 4 ~ )  should also 
affect the value of Cp (i.e. W,, in their paper). The values of their Cp would possibly 
be larger than the actual values of C, owing to the fairly slow s - ~  decay of the 
retarded attractive potential. 
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